首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9670篇
  免费   942篇
  国内免费   345篇
  2023年   160篇
  2022年   78篇
  2021年   219篇
  2020年   274篇
  2019年   362篇
  2018年   292篇
  2017年   381篇
  2016年   331篇
  2015年   375篇
  2014年   377篇
  2013年   507篇
  2012年   356篇
  2011年   364篇
  2010年   308篇
  2009年   495篇
  2008年   515篇
  2007年   628篇
  2006年   497篇
  2005年   471篇
  2004年   396篇
  2003年   384篇
  2002年   326篇
  2001年   275篇
  2000年   237篇
  1999年   252篇
  1998年   239篇
  1997年   177篇
  1996年   183篇
  1995年   169篇
  1994年   123篇
  1993年   149篇
  1992年   135篇
  1991年   114篇
  1990年   102篇
  1989年   104篇
  1988年   91篇
  1987年   84篇
  1986年   62篇
  1985年   56篇
  1984年   58篇
  1983年   34篇
  1982年   46篇
  1981年   38篇
  1980年   26篇
  1979年   21篇
  1978年   27篇
  1977年   11篇
  1976年   10篇
  1975年   8篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
101.
A study was conducted in the spring of 2009, the winters of 2010 and 2013, and in the summer of 2012 at 13 stations in Boughrara Lagoon, Tunisia (southern Mediterranean). The country⿿s largest lagoon, it is considered to be an anthropogenically stressed area, though a major tourist centre⿿Djerba Island⿿is located along its northern shores. The lagoon bottoms were studied via analyses of grain size, surface sediment composition, total organic matter (TOM) and through the trophic and functional organisation of benthic macrofauna. The results indicate that the bottoms are composed of fine, medium or coarse sands and that sediment distribution is controlled by water movement. Estimation of TOM content revealed that the studied samples present both normal and imbalanced sediments. The structure and organisation of the lagoon⿿s benthic macrofauna are dominated by select deposit feeders and underwent significant changes during the period 2010⿿2013.Subjected for decades to increased pollution due to growing human activities in the surrounding area, Boughrara Lagoon now appears to be impacted by certain environmental/anthropogenic stressors, as indicated by the presence of pollution-tolerant bio-indicator species in the imbalanced area. The response of the lagoon ecosystem to changes in benthic sediment deposition provides a potential assessment tool for similar habitats elsewhere.  相似文献   
102.
103.
104.
1. An increasing number of studies have addressed the mechanisms by which plant inter‐specific variation influence interactions at higher trophic levels, but little is known about the underlying plant traits driving these dynamics. 2. Here we investigated the effects of host plant species on herbivore‐parasitoid interactions and the underlying traits driving such effects. For this, we measured the abundance of seed‐eating bruchids and their parasitoids across seven sympatric populations of the bean species Phaseolus coccineus and Phaseolus vulgaris in Central Mexico. To investigate the mechanisms underlying differences between bean species in bruchid‐parasitoid interactions, we carried out two laboratory experiments to test whether bruchid and parasitoid performance differed between plant species. We also measured seed size and phenolic compounds to investigate if seed traits mediate bruchid‐parasitoid interactions by influencing herbivore susceptibility or resistance to parasitoids. 3. Field surveys revealed that the rate of parasitoid recruitment to bruchids was significantly higher on P. vulgaris than on P. coccineus. Subsequent laboratory bioassays indicated that bruchids developed more slowly and exhibited lower fitness on P. vulgaris seeds than on P. coccineus seeds. Accordingly, we found that bean species differed in seed size, with P. vulgaris having smaller (less nutritious) seeds, which explains why bruchid development was slower on this plant species. 4. These results provide a mechanism for why bruchids exhibited higher parasitism rates on seeds of P. vulgaris in the field which could be due to Slow‐Growth/High‐Mortality effects, a smaller physical refuge provided by the seed, or both factors. The roles of these mechanisms remain inconclusive without further study.  相似文献   
105.
The use of the negative binomial distribution in both the numerator and denominator in prospective studies leads to an unbiased estimate of the odds ratio and an exact expression for its variance. Sample sizes that minimize the variance of odds ratio estimates are specified. The variance of the odds ratio estimate is shown to be close to the Cramér-Rao lower bound.  相似文献   
106.
107.
Imputation of missing genotypes, in particular from low density to high density, is an important issue in genomic selection and genome‐wide association studies. Given the marker densities, the most important factors affecting imputation accuracy are the size of the reference population and the relationship between individuals in the reference (genotyped with high‐density panel) and study (genotyped with low‐density panel) populations. In this study, we investigated the imputation accuracies when the reference population (genotyped with Illumina BovineSNP50 SNP panel) contained sires, halfsibs, or both sires and halfsibs of the individuals in the study population (genotyped with Illumina BovineLD SNP panel) using three imputation programs (fimpute v2.2, findhap v2, and beagle v3.3.2). Two criteria, correlation between true and imputed genotypes and missing rate after imputation, were used to evaluate the performance of the three programs in different scenarios. Our results showed that fimpute performed the best in all cases, with correlations from 0.921 to 0.978 when imputing from sires to their daughters or between halfsibs. In general, the accuracies of imputing between halfsibs or from sires to their daughters were higher than were those imputing between non‐halfsibs or from sires to non‐daughters. Including both sires and halfsibs in the reference population did not improve the imputation performance in comparison with when only including halfsibs in the reference population for all the three programs.  相似文献   
108.
Sexual size dimorphism is assumed to be adaptive and is expected to evolve in response to a difference in the net selection pressures on the sexes. Although a demonstration of sexual selection is neither necessary nor sufficient to explain the evolution of sexual size dimorphism, sexual selection is generally assumed to be a major evolutionary force. If contemporary sexual selection is important in the evolution and maintenance of sexual size dimorphism then we expect to see concordance between patterns of sexual selection and patterns of sexual dimorphism. We examined sexual selection in the wild, acting on male body size, and components of body size, in the waterstrider Aquarius remigis, as part of a long term study examining net selection pressures on the two sexes in this species. Selection was estimated on both a daily and annual basis. Since our measure of fitness (mating success) was behavioral, we estimated reliabilities to determine if males perform consistently. Reliabilities were measured as ? statistics and range from fair to perfect agreement with substantial agreement overall. We found significant univariate sexual selection favoring larger total length in the first year of our study but not in the second. Multivariate analysis of components of body size revealed that sexual selection for larger males was not acting directly on total length but on genital length. Sexual selection for larger male body size was opposed by direct selection favoring smaller midfemoral lengths. While males of this species are smaller than females, they have longer genital segments and wider forefemora. Patterns of contemporary sexual selection and sexual size dimorphism agree only for genital length. For total length, and all other components of body size examined, contemporary sexual selection was either nonsignificant or opposed the pattern of size dimporhism. Thus, while the net pressures of contemporary selection for the species may still act to maintain sexual size dimorphism, sexual selection alone does not.  相似文献   
109.
The use of individual-based models in the study of the spatial patterns of disturbances has opened new horizons in forest ecosystem research. However, no studies so far have addressed (i) the uncertainty in geostatistical modelling of the spatial relationships in dendrochronological data, (ii) the number of increment cores necessary to study disturbance spatial patterns, and (iii) the choice of an appropriate geostatistical model in relation to disturbance regime. In addressing these issues, we hope to contribute to advances in research methodology as well as to improve interpretations and generalizations from case studies.We used data from the beech-dominated Žofínský Prales forest reserve (Czech Republic), where we cored 3020 trees on 74 ha. Block bootstrap and geostatistics were applied to the data, which covered five decades with highly different disturbance histories. This allowed us to assess the general behavior of various mathematical models. Uncertainty in the spatial patterns and stability of the models was measured as the length of the 95% confidence interval (CI) of model parameters.According to Akaike Information Criterion (AIC), the spherical model fitted best at the range of ca. 20 m, while the exponential model was best at the range of ca. 60 m. However, the best fitting models were not always the most stable. The stability of models grew significantly with sample size. At <500 cores the spherical model was the most stable, while the Gaussian model was very unstable at <300 cores. The pure nugget model produced the most precise nugget estimate. The choice of model should thus be based on the expected spatial relations of the forest ecosystem under study. Sill was the most stable parameter, with an error of ±6–20% for ≥1110 core series. By contrast, practical range was the most sensitive, with an error of at least ±59%. The estimation of the spatial pattern of severe disturbances was more precise than that of fine-scale disturbances.The results suggest that with a sample size of 1000–1400 cores and a properly chosen model, one reaches a certain precision in estimation that does not increase significantly with growing sample size. It appears that in temperate old-growth forests controlled by fine-scale disturbances, it is necessary to have at least 500 cores to estimate sill, nugget and relative nugget, while to estimate practical range at least 1000 cores are needed. When choosing the best model, the stability of the model should be considered together with the value of AIC. Our results indicate the general limits of disturbance spatial pattern studies using dendrochronological and geostatistical methods, which can be only partially overcome by sample size or sampling design.  相似文献   
110.
1. The characterisation of energy flow through communities is a primary goal of ecology. Furthermore, predator–prey interactions can influence both species abundance and community composition. The ant subfamily Ponerinae includes many predatory species that range from generalist insectivores to highly specialised hunters that target a single prey type. Given their high diversity and ubiquity in tropical ecosystems, measuring intra- and interspecific variation in their trophic ecology is essential for understanding the role of ants as predators of insect communities. 2. The stable isotopic composition of nitrogen of 22 species from the ant subfamily Ponerinae was measured, relative to plants and other predatory and herbivorous insects at two Atlantic Forest sites in Argentina. The study tested the general assumption that ponerine ants are all predatory, and examined intra- and interspecific variation in trophic ecology relative to habitat, body size and cytochrome c oxidase subunit 1 sequences (DNA barcoding). 3. Stable isotope analysis revealed that most ponerines occupy high trophic levels (primary and secondary predators), but some species overlapped with known insect herbivores. Species residing at low trophic levels were primarily arboreal and may rely heavily on nectar or other plant-based resources in their diet. In addition, larger species tend to occupy lower trophic positions than smaller species. 4. Although some of the species were divided into two or more genetic clusters by DNA barcoding analysis, these clusters did not correspond to intraspecific variation in trophic position; therefore, colony dietary flexibility most probably explains species that inhabit more than one trophic level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号